学术讲座通知​:深度结构建模及其在物体检测和姿态估计中的应用

题目:Modeling deep structures with application to object detection and pose estimation
报告人:欧阳万里 博士 香港中文大学
主持人:李春光
时间:2017年4月12日(星期三)16:00-17:20
地点:教三811会议室

摘要:Deep learning attempts to learn feature representation by multiple levels of abstraction. It is found to be useful in speech recognition, face recognition, image classification, biology, physics, and material science. In this talk, a brief introduction will be given on our recent progress in using deep learning as a tool for modeling the structure in visual data for object detection and human pose estimation. We show that observation in our problem are useful in modeling the structure of deep model and help to improve the performance of deep models for our problem.

报告人简介:
Wanli Ouyang received the PhD degree in the Department of Electronic Engineering, The Chinese University of Hong Kong, where he is now a research assistant professor. His research interests include image processing, computer vision and pattern recognition. He is the first/correspondence author of 6 papers on TPAMI and IJCV, and has published 26 papers on top tier conferences like CVPR, ICCV and NIPS. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is one of the most important grand challenges in computer vision. The team led by him ranks No. 1 in the ILSVRC 2015 and ILSVRC 2016. He receives the best reviewer award of ICCV. He has been the reviewer of many top journals and conferences such as IEEE TPAMI, TIP, IJCV, TSP, TITS, TNN, CVPR, and ICCV. He is a senior member of the IEEE.
(更多信息请关注: http://www.ee.cuhk.edu.hk/~wlouyang/ )

发表评论

电子邮件地址不会被公开。 必填项已用*标注